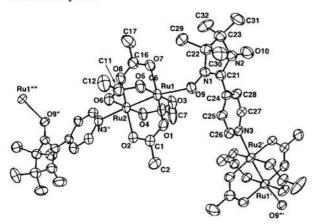
Chemistry Letters 1998 777


Ferromagnetic Chain Complex of Ruthenium(II,III) Pivalate with Pyridyl Nitronyl Nitroxide

Yasuyoshi Sayama, Makoto Handa,*† Masahiro Mikuriya,* Ichiro Hiromitsu,† and Kuninobu Kasuga†
Department of Chemistry, School of Science, Kwansei Gakuin University, Uegahara, Nishinomiya 662-8501
†Department of Material Science, Interdisciplinary Faculty of Science and Engineering, Shimane University
Nishikawatsu, Matsue 690-8504

(Received April 28, 1998; CL-980324)

A chain complex of ruthenium(II,III) dimer with pyridyl nitronyl nitroxide, $[Ru_2(O_2CCMe_3)_4(p\text{-pynit})]_n(BF_4)_n$ (p-pynit = 2-(4-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxyl 3-oxide) has been prepared and charactarized by the X-ray crystal structure analysis. The magnetic susceptibility data show that a ferromagnetic interaction is operative between the ruthenium(II,III) dimers and pyridyl nitronyl nitroxides.

Metal carboxylates with metal-metal bonding have been proved to be a good building-block for constructing onedimensional chain compounds.1 Recently some efforts to produce magnetic chain compounds have been done by using nitroxide radicals and metal carboxylates. 2-5 Such compounds may provide a new aspect of one-dimensional magnetic materials because of the presence of the metal-metal bonding. However, none of them are successful in producing ferromagnetic nor ferrimagnetic interaction between the nitroxide radicals and paramagnetic metal carboxylates, although a few radicals form a chain compounds with metal carboxylates. 4.5 In this study, we have introduced pyridyl group into nitroxide radicals in order to attempt to make new magnetic materials. Here we report a chain complex, $[Ru_2(O_2CCMe_3)_4(p-pynit)]_p(BF_4)_p(1)$ (p-pynit = 2-(4pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxyl 3-oxide), which is the first example of ferromagnetic chain compounds made up of nitronyl nitroxides and paramagnetic metal carboxylates.

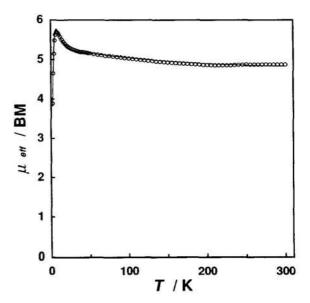


Figure 1. ORTEP view of $[Ru_2(O_2CCMe_3)_4(p-pynit)]_n$ (BF₄)_n•1.5nCH₂Cl₂ (1•1.5nCH₂Cl₂). Methyl groups of pivalic acid moieties, BF₄ ions, and CH₂Cl₂ molecules are omitted. Selected bond distances (llÅ) and angles (ϕ /°): Ru1-Ru2 2.272(1), Ru1-O1 2.005(7), Ru1-O3 2.006(7), Ru1-O5 2.007(7), Ru1-O7 2.015(7), Ru2-O2 2.014(7), Ru2-O4 2.021(7), Ru2-O6 2.008(7), Ru2-O8 2.020(7), Ru1-O9 2.286(7), Ru2-N3" 2.248(9), O9-N1 1.30(1), O10-N2 1.27(1); Ru2-Ru1-O9 169.5(2), Ru1-Ru2-N3" 176.2(2), Ru1-O9-N1 125.3(6).

Complex 1 was prepared by a reaction of $[Ru_2(O_2CCMe_3)_4(H_2O)_2]BF_4^{\ \ 6}$ and p-pynit⁷ in a ratio of 1:1 in dichloromethane—hexane under $Ar.^8$

The X-ray crystal structure of **1** shows that the complex is an extended zig-zag chain of alternating diruthenium carboxylate cation and nitroxide, elongated along the *b* axis (Figure 1). The Ru1-Ru2 bond distance is 2.272(1)Å, which is in the range of those of other [Ru₂(O₂CR)₄]⁺ compounds (2.24–2.30 Å). The axial positions are occupied by pyridyl group and one of the two N-O groups of *p*-pynit with the Ru2-N3" and Ru1-O9 distances of 2.248(9) and 2.286(7) Å, respectively. The Ru1-Ru2-N3" and Ru2-Ru1-O9 angles are 176.2(2) and 169.5(2)°, respectively. The bonding parameters of *p*-pynit moiety show that the nitronyl nitroxide is in a free radical form, although the N-O bond coordinated to the Ru atom (N1-O9 1.30(1) Å) is a little longer than that of the non-coordinated N-O group (N2-O10 1.27(1) Å).

The room temperature magnetic moment is 4.88 BM, considerably higher than the value (4.24 BM) expected for non-interacting spins S = 3/2 (Ru₂^{II,III} core) and S = 1/2 (p-pynit). In Figure 2, the variation of the effective magnetic moment with temperature (2–300 K) is shown. The effective magnetic moment of 1 increases with lowering of temperature, reaches a maximum at 8 K, and then decreases sharply down to 2 K. The magnetic data were analyzed by a $[-(S = 1/2)-J-(S = 3/2)-J'-]_n$ chain model, where J is the spin coupling constant through the N-O group of p-pynit and J' is the spin coupling constant through the pyridyl group of the nitronyl nitroxide, respectively. The

Figure 2. Temperature dependence of effective magnetic moment of 1.

778 Chemistry Letters 1998

best fit with $J = 20 \text{ cm}^{-1}$, $J' = 0.45 \text{ cm}^{-1}$, $D = 50 \text{ cm}^{-1}$, $g_{Ru} = 2.23$, and $g_{p-p,nit} = 2.00$ for 1 was obtained as the solid line in Figure $2.^{12}$ This result shows that 1 is a ferromagnetic chain compound and the ferromagnetic behavior comes mainly from the spin interaction through the N-O group of p-pynit. In this regard, it is noteworthy that the Ru1-O9-N1 angle is only $125.3(6)^\circ$. This angle is considerably smaller than those observed for the antiferromagnetic Ru₂ ILIII nitroxide complexes, where the Ru-O-N angles are 147.5(7) and $151.5(3)^\circ$, resulting in a substantial overlap between the π^* orbital of the Ru₂ core and the π^* orbital of the nitroxide radical. 3.5 It is very likely that the small Ru1-O9-N1 angle brings about the orthogonality of the Ru-Ru π^* and nitroxide π^* orbitals, leading to the ferromagnetic behavior of the present complex. Further studies are now under way.

The present work was partially supported by a Grant-in-Aid for Scientific Research (Nos. 08404046 and 09874136) and Grant-in-Aid for Scientic Research on Priority Areas (No. 10149255) from the Ministry of Education, Science, Sports and Culture and by a grant from the Sumitomo Foundation.

References and Notes

- M. Handa, K. Kasamatsu, K. Kasuga, M. Mikuriya, and T. Fujii, Chem. Lett., 1990, 1753; M. Handa, M. Mikuriya, R. Nukada, H. Matsumoto, and K. Kasuga, Bull. Chem. Soc. Jpn., 67, 3125 (1994); M. Handa, M. Mikuriya, T. Kotera, K. Yamada, T. Nakao, H. Matsumoto, and K. Kasuga, Bull. Chem. Soc. Jpn., 68, 2567 (1995); M. Handa, M. Mikuriya, Y. Sato, T. Kotera, R. Nukada, D. Yoshioka, and K. Kasuga, Bull. Chem. Soc. Jpn., 69, 3483 (1996).
- A. Cogne, E. Belorizky, J. Laugier, and P. Rey, *Inorg. Chem.*, 33, 3364 (1994).
- 3 M. Handa, Y. Sayama, M.Mikuriya, R. Nukada, I. Hiromitsu, and K.Kasuga, Bull. Chem. Soc. Jpn., 68, 1647 (1995).
- 4 A. Cogne, A. Grand, P. Rey, and R. Subra, J. Am. Chem.

- Soc., 111, 3230(1989).
- 5 M. Handa, Y. Sayama, M.Mikuriya, R. Nukada, I. Hiromitsu, and K.Kasuga, Bull. Chem. Soc. Jpn., 71, 119 (1998).
- 6 M. C. Barral, R. Jimenez-Aparicio, J. L. Priego, E. C. Royer, E. Gutierrez-Puebla and C. Ruiz-Valero, *Polyhedron*, 11, 2209 (1992).
- 7 M. S. Davis, K. Morokuma, and R. W. Kreilick, J. Am. Chem. Soc., 94, 5588 (1972).
- 8 Satisfactory microanalytical data (C, H, N) were obtained. Anal. [Ru₂(O₂CCMe₃)₄(p-pynit)]_n(BF₄)_n (1); Found: C, 41.50; H, 5.64; N, 4.56%. Calcd for C₃₂H₅₂BF₄N₃O₁₀Ru₂:C, 41.42; H, 5.65; N, 4.53%.
- 9 Crystallographic data for $1 \cdot 1.5 \text{nCH}_2\text{Cl}_2$; $C_{33.5}\text{H}_{55}\text{BCl}_3\text{F}_4\text{N}_3\text{-}O_{10}\text{Ru}_2$, F.W. = 1049.3, monoclinic, space group $P2_1/c$, a = 11.421(3), b = 17.424(3), c = 26.358(8) Å, $\beta = 98.75(1)^\circ$, V = 5184(2) Å³, Z = 4, $D_m = 1.40$, $D_c = 1.35 \text{ gcm}^{-3}$, $\mu(\text{Mo } \text{K}\alpha) = 7.85 \text{ cm}^{-1}$, 8932 reflections measured $(2\theta_{\text{max}} = 49^\circ)$, 4973 $[I \geq 3\sigma(I)]$ used in the refinement, R = 0.061, $R_w = 0.079$. Intensity data were collected on an Enraf-Nonius CAD4 diffractometer using graphite-monochromated Mo-K α radiation. The structure was solved by the direct method and refined by the full-matrix least-squares method using a MolEN program package.
- 10 F. A. Cotton and R. A. Walson, "Multiple Bonds Between Metal Atoms," 2nd ed, Oxford Univ. Press, New York (1993).
- 11 W. Wong and S.F. Watkins, J. Chem. Soc., Chem. Commun., 1973, 888; A. Zheludev, V. Barone, M.Bonnet, B. Delley, A.Grand, E. Ressouche, P. Rey, R. Subra, and J. Schweuzer, J. Am. Chem. Soc., 116, 2019 (1994); K. Awaga, T. Inabe, and Y. Maruyama, Chem. Phys. Lett., 1992, 349.
- 12 The parameters, D, g_{Ru} , and $g_{p,p,ynit}$ are zero-field splitting parameter and g factors for the $Ru_2^{\Pi,\Pi}$ core and the nitroxide radical, respectively.